Exercise 3 | Basics of Data Analysis |
Max Pellert ! L=

= Ve,

o F BRli i = l} .§-%§ I l T |j I || ! H -u uﬂ L. i: ﬂ _
""" l ‘LI | |‘| ||) I Jﬂ el (TR ¢

__\ \.,77 _. ST
s - x e e s — T .\.,,',__
T s, T c**‘ N K_\ W :
A __r_‘Iri L o B A = o, _:;4 TR
= h* 2 'L '. o . % = oy

UNIVERSITY
) OF MANNHEIM

Data

(56)

the Reader, that he hath found, that the Apertarer, which Optick.
Glaffes can bear with diftinctnefs, are in about a fabduplicate
proportion to their Lengths ; whereof he tells us he intends to give
the reafon and demonitration inhis Diopsicks, which he is now
writing, and intends to finifh, as foon as his Health will permir.
In the meantime, he prefentsthe Reader with a Table of fuch
Apertures ; which is here exhibited to the Confideration of the
Ingenions, there being of this Frencs Book but one Copy, that
is known, in England.

A T A4 BLE ofthe Apertures of 6bjell. Glajfs.
The Points putto fome of thefc Nymbers denote Fralionss

‘Lengibs of iFar exceliont For good | For ordinary Lingtie of |For excelien: For gad | Fir ordinary
3o Glafies. ¢ omes. | ones ones, Glafies, ones. T omes, ores.
iFecty Inches. Tach. Lines, Puch, Lines[Eack. Lines Feer, Inches!lnch, Lants, Iuche Lines, Inck, Lines:
i i i ! .
Poooab 4 4l 325 i3 42 1oz 4
| é 5“i 5 4130 3 83 2;2 7.
91 7 é 5i35 4 02 42 10
£ ol 81 7 6140 4 3i3 713 S
I 65! 9 8 7i45 4 6;3 10)2 2!
12 c Ty 10 850 4 9.4 03 4.
P69 5y a5 S G4 o33 s
i3 ox I|£~ 05 1060 VS' 2,.4. 613 8,
: — T ey
PRI B 1 itig s 5 44 8l3 m%
o1 41X 2t Of70 5 74 I04 .
i 61 5ix 31 75 3 95 014 2.!
e s 115y 24 5

3

4

4 i

5 ot 61 4it 1..80
s

7

8

" | | i
| i T T e T T
o7t 5| 2150 1 45 6+ 7
T 9:f 6;[3 ICo 6 3 5 94. b (o5
: i! 101 8ix 4120 |7 58 55 3
;9 5! 11,,11 9{: sirso |3 loFs o5 1Ix
i i ot
1o IQ It 10l 6l200 g 6‘8 ¥4 9
12 2 42 ogt 8i250 19 69 2y 8!
11 2 6 2't 9.300 |uir 610 ‘08 5:
1 2 2 41 IL!350 12 6l1e o9 o
{18 2 102 6{‘: ¥ 400 13 4ltx 69 s
N . ! 1 ! i
UNIVERSITY I L "

OF MANNHEIM

How to store data?

We will talk about two broad kinds of data formats

Human readable formats

Classical: Comma-seperated values (CSV) or Tabulator-
seperated (TSV)

Also: JSON, YAML and many others

“Binary” formats
Those would show up as garbage in your text editor

Maybe not so accessible, but other advantages

UNIVERSITY
) OF MANNHEIM

company, surname, forename
Foo Tech,Jones,Alice

Top Bar Hardware,Smith,Bob
Quxcorp,Garcia,Carlos

UNIVERSITY
) OF MANNHEIM

Human readable formats

Easy to inspect
Pretty straightforward to use

What about data types? Long float/numeric or character
string? Character string or date object?

Performance? I/O

Corruption? What if the field separator is contained within
the field? Problems like this lead to many quoting and
escaping rules and other differences between users and
software packages

Convenience?

UNIVERSITY
) OF MANNHEIM

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode"”: "10021-3100"

b
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"
hE
{
"type": "office",
"number": "646 555-4567"
}
I
"children": [
"Catherine",
"Thomas",
"Trevor"

]l

"spouse": null

JECECE
(] (] o

momor UNIVERSITY
i OF MANNHEIM

JavaScript Object Notation

UNIVERSITY
) OF MANNHEIM

ILUNIVERSITY

OF MANNHEIM

receipt: 0z-Ware Purchase Invoice
date: 2012-08-06
customer:

first_name: Dorothy

family name: Gale

items:
- part_no: A4786
descrip: Water Bucket (Filled)
price: 1.47
quantity: 4

- part_no: E1628
descrip: High Heeled "Ruby" Slippers

size: 8
price: 133.7
quantity: 1

bill-to: &ideol

street: |
123 Tornado Alley
Suite 16
city: East Centerville
state: KS

ship-to: *idool

specialDelivery: >
Follow the Yellow Brick
Road to the Emerald City.
Pay no attention to the
man behind the curtain.

ILUNIVERSITY
OF MANNHEIM

YAML (/'jzamal/) (see § History and name) is a human-readable data-serialization language. It is
commonly used for configuration files and in applications where data is being stored or
transmitted. YAML targets many of the same communications applications as Extensible Markup
Language (XML) but has a minimal syntax which intentionally differs from Standard Generalized
Markup Language (SGML).[2] It uses both Python-style indentation to indicate nesting, and a
more compact format that uses [...] forlistsand {...} for maps[21 but forbids tab
characters to use as indentation!3! thus only some JSON files are valid YAML 1.2.[4]

Filename
extensions

Internet

YAML

YA
ML

.yaml, .yml

Not registered

Binary formats

Can store the data type of the column: no more userids read
in as numeric and converted to scientific notation

Can optimize for read speed
Can optimize for disk space (compression)

Depending on the format, can offer to do column subsets for
reading in

Advanced: sometimes you can use database query language
on some formats with special packages

UNIVERSITY
) OF MANNHEIM

ARRO w>>>

UNIVERSITY
) OF MANNHEIM

Apache Parquet

Documentation @ " Download 2 |

Apache Parquet is an open source, column-oriented data file format designed for efficient data storage and retrieval. It
grovidesefiigient:data compression and encoding schemes with enhanced performance to handle complex data in bulk.
' 5, ZASY Parqguet s available in multiple languages including Java, C++, Python, etc...

s
&L UNIVERSITY
OF MANNHEIM

\s| =
NG

eijgbe:

JECECE

UNIVERSITY

#y OF MANNHEIM

pickle — Python object serialization

Source code: Lib/pickle.py

The pickle module implements binary protocols for serializing and de-serializing a Python object structure.
“Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and “unpickling” is
the inverse operation, whereby a byte stream (from a binary file or bytes-like object) is converted back into an

object hierarchy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalling,” [1] or
“flattening”; however, to avoid confusion, the terms used here are “pickling” and “unpickling”.

UNIVERSITY

®y OF MANNHEIM

readRDS {base}
Serialization Interface for Single Objects
Description

Functions to write a single R object to a file, and to restore it.

Usage

saveRDS(object, file = "", ascii = FALSE, version = NULL,
compress = TRUE, refhook NULL)

readRDS(file, refhook = NULL)
infoRDS(file)

How to load data?

Easy answer: Depends on the storage format

For humanly readable data a lot of different functions (for
example from pandas, data.table, dplyr, ...): read.csv, read_csy,
fread, *from _csv, ...

The binary formats usually offer a library that can be loaded
to provide import and export functions

UNIVERSITY
) OF MANNHEIM

How to decide between formats?

If there are no big constraints on disk space, I/O performance
and similar things: (almost) everybody can work with TSVs

If you need to read in repeatedly large files, you can make
your life much easier when you choose a format that
optimizes I/O (like feather from Appache Arrow for example)

If disk space is an issue, use a format that supports good
compression like parquet

UNIVERSITY
) OF MANNHEIM

A note on CSVs

What if the field seperator (a comma for example) appears
within a field? (in a text for example)

One solution: We quote the field a, <TEXTWITHCOMMA>"b

What about an actual quotation mark appearingin
<TEXTWITHCOMMAANDQUOTATIONMARK>?

We escape (\), double (") or change to single quotation
marks (')

-> Quoting and escape rules with no real standard

TSV are a bit “safer” (because tabulators are more rare within
fields), but still better to pay attention to the possibility

UNIVERSITY
) OF MANNHEIM

How to manipulate the data?
Usually the bottleneck is RAM
For R as well as Python all objects are handled in memory
Some tricks can help like the one we will discuss shortly
Most important: avoid unnecessary copies!

Many functions that are not well-implemented copy a lot

UNIVERSITY
) OF MANNHEIM

One tip from practice

Make use of column subsetting, i.e. specify the columns you
need in the loading function (many formats support this)

Especially handy when you work with text: huge data sets
tend to overwhelm the memory you have on typical machines
quite easily

One workaround can be to work with a (row) index instead of
the full text and do all kind of preprocessing with the
(lightweight) metadata

Then write out the index of those rows that you actually keep
and use a lightweight UNIX tool like AWK to select line by line

only those from the original text file

UNIVERSITY
) OF MANNHEIM

A not(e) on loops in R

R works best on vectors (“vectorized” functions are usually
way faster)

Avoid loops wherever possible

Functions like the apply family (lapply, sapply, ...) sometimes
also loop, but avoid some performance bottlenecks

If you have to loop, prespecify at least the size of the output
object, for example a list, first

UNIVERSITY
) OF MANNHEIM

Use the remaining time to

Load the data set that you selected in the last exercise
Save it in different binary formats:
Apache Arrow, Parquet

Depending on your choice of programming language: pickle
or saveRDS

Check and load each of the saved files again and take note of
any differences (in terms of speed, functionality, disk space)

UNIVERSITY
) OF MANNHEIM

