
Lecture 3 | Basics of Data Analysis I

Max Pellert

IS 616: Large Scale Data Analysis and Visualization

1

Aim

These course units are intended as a supplement to your
actual work with data

It wants to teach you some tricks that are often not taught

🔨🧰🪛
2

Some Caveats

Don’t expect a full-fledged course that answers it all for you

That also doesn’t fit the subject matter

Data science is more like dentistry than particle physics

But, the aim is to bring everybody to the same level to be able
to actually do visualizations (while at the same time also
providing content that very likely also the more advanced
student also haven’t heard yet)

It should convey some of the (softer) skills that you actually
need often

3

“It is often said that 80% of data analysis is spent on the
process of cleaning and preparing the data (Dasu and
Johnson 2003).”

Wickham, 2014

4

5

Tidy Data

Wickham, H. (2014). Tidy Data. Journal of Statistical
Software, 59(10). https://doi.org/10.18637/jss.v059.i10

6

https://doi.org/10.18637/jss.v059.i10

What makes a data set tidy?

“each variable is a column”

“each observation is a row”

“each type of observational unit is a table” (also called data
frame or data table)

“data tidying: structuring datasets to facilitate analysis”

It provides a “philosophy of data”

7

What makes a data set untidy?

Generally, data sets can be constructed in all bizarre ways
imaginable

8

Wide vs. long formats

9

10

Create and use tidy data also in

the interest of reproducibility and

open science (think of git too!)

11

12

13

https://cran.r-
project.org/web/packages/data.table/vignettes/datatable-
intro.html

14

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html

15

16

library(data.table)

DT = as.data.table(iris)

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

FROM[WHERE, SELECT, GROUP BY]

DT [i, j, by]

DT[Petal.Width > 1.0, mean(Petal.Length), by = Species]

Species V1

1: versicolor 4.362791

2: virginica 5.552000

17

https://pandas.pydata.org/

18

https://pandas.pydata.org/

19

https://pandas.pydata.org/pandas-docs/
stable/getting_started/intro_tutorials/
03_subset_data.html#min-tut-03-subset

20

https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/03_subset_data.html#min-tut-03-subset

import pandas as pd

titanic = pd.read_csv("data/titanic.csv")

titanic.head()

PassengerId Survived Pclass ... Fare Cabin Embarked

0 1 0 3 ... 7.2500 NaN S

1 2 1 1 ... 71.2833 C85 C

2 3 1 3 ... 7.9250 NaN S

3 4 1 1 ... 53.1000 C123 S

4 5 0 3 ... 8.0500 NaN S

[5 rows x 12 columns]

21

ages = titanic["Age"]

ages.head()

0 22.0

1 38.0

2 26.0

3 35.0

4 35.0

Name: Age, dtype: float64

above_35 = titanic[titanic["Age"] > 35]

above_35.head()

PassengerId Survived Pclass ... Fare Cabin Embarked

1 2 1 1 ... 71.2833 C85 C

6 7 0 1 ... 51.8625 E46 S

11 12 1 1 ... 26.5500 C103 S

13 14 0 3 ... 31.2750 NaN S

15 16 1 2 ... 16.0000 NaN S

[5 rows x 12 columns]

22

titanic["Age"] > 35

0 False

1 True

2 False

3 False

4 False

...

886 False

887 False

888 False

889 False

890 False

Name: Age, Length: 891, dtype: bool

23

“Two sides to data analysis”

Specialized programming languages like R (or the right
packages in Python) are often well suited for your tasks

As we already learned: the bottleneck is usually RAM
(because whole objects are kept in memory)

Small command line tools, on the other hand, work
differently, usually line by line

This is often due to those tools being ancient and from times
of severe hardware limitations

–> very efficient ways to do specific, simple operations

24

GNU toolchain

Can come in extremely handy

Caveat: Best to use them exactly for the task that they were
designed for, even small deviations for other tasks can cause
a lot of headache

Because these programs are often missing very basic
concepts that are very common today

Usually, those tools work on lines of “humanly readable files”
that you could open with any text editor (for example lines of
text)

A line has a start and an end (usually the newline character)

25

The small programs that we will discuss now have been
pioneers by tackling specific tasks that come up often

That’s why their functionalities have been modeled by
practically all later developments (sometimes even with the
same name)

It gives you an idea how to think “algorithmically” about a
task, which often helps massively finding a solution

Also helps to ask the question right:

26

AWK

https://stackoverflow.com/questions/11532157/remove-
duplicate-lines-without-sorting

27

https://stackoverflow.com/questions/11532157/remove-duplicate-lines-without-sorting

grep

grep 'Smith' data/titanic.csv

175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C

261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q

285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S

347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S

28

wc

“word count”, but also counts lines with the right option:

Extremely handy for quick sanity checks, e.g. was all of the
data transferred?

wc -l data/titanic.csv

892 data/titanic.csv

29

paste

cat data/file1.txt

Suse

Fedora

CentOS

OEL

Ubuntu

cat data/file2.txt

Linux

Unix

Solaris

HPUX

AIX

30

paste data/file1.txt data/file2.txt

Suse Linux

Fedora Unix

CentOS Solaris

OEL HPUX

Ubuntu AIX

paste -d"," data/file1.txt data/file2.txt

Suse,Linux

Fedora,Unix

CentOS,Solaris

OEL,HPUX

Ubuntu,AIX

31

Learn how to use the terminal!

32

Looping over files

Allows you to directly script in any directory of your file
system

Is often much faster (and sometimes also safer) than to use a
Python or R script for that

But still, many unintented things can happen, so be careful!

Basic wildcard matching is usually also possible and can come
in very handy, for example to select all files with a specific
naming scheme (e.g. date) or file ending

33

ls

03_basics_of_data_analysis_I_lecture.html

03_basics_of_data_analysis_I_lecture.Rmd

awk_dedup_cropped.png

bash_cropped.png

data

data_manipulation_cropped.png

data.table_cropped.png

dplyr_cropped.png

features_data.table.png

features_pandas.png

grep_cropped.png

job_control_cropped.png

logo-stackoverflow.png

missing_semester_cropped.png

missing_semester_why_cropped.png

molten_data_cropped.png

pandas_cropped.png

34

for i in *.png; do echo $i; done

awk_dedup_cropped.png

bash_cropped.png

data_manipulation_cropped.png

data.table_cropped.png

dplyr_cropped.png

features_data.table.png

features_pandas.png

grep_cropped.png

job_control_cropped.png

logo-stackoverflow.png

missing_semester_cropped.png

missing_semester_why_cropped.png

molten_data_cropped.png

pandas_cropped.png

pandas.png

paste_cropped.png

pipe_abstract.png

35

Chaining (or piping)

Allows you to chain simple tools together

Those tools often only have very limited applications (but
usually work on them very efficiently)

Chaining them is extremely powerful as you can build up very
complex pipelines from those simple tools

Pipe characters: | (or %>% or %|% or many others)

36

37

ls | grep png | head -10

awk_dedup_cropped.png

bash_cropped.png

data_manipulation_cropped.png

data.table_cropped.png

dplyr_cropped.png

features_data.table.png

features_pandas.png

grep_cropped.png

job_control_cropped.png

logo-stackoverflow.png

ls | grep png | grep features

features_data.table.png

features_pandas.png

38

39

40

Take a look at ./missing-semester

You learn about small tools and tricks that can be enormous
time savers

Especially important, learning about command line interfaces
and job control:

https://missing.csail.mit.edu/

41

https://missing.csail.mit.edu/
https://www.youtube.com/watch?v=e8BO_dYxk5c

