
Lecture 4 | Basics of Data Analysis II

Max Pellert

IS 616: Large Scale Data Analysis and Visualization

1

Tidy data and tidy tools make data analysis easier…

…by easing the transitions between manipulation,
visualization and modeling

2

Tidy data and tidy tools make data analysis easier…

…by easing the transitions between manipulation,
visualization and modeling.

3

“The tidy data standard has been designed to facilitate initial
exploration and analysis of the data, and to simplify the
development of data analysis tools that work well together.

Current tools often require translation. You have to spend
time munging the output from one tool so you can input it
into another.

Tidy datasets and tidy tools work hand in hand to make data
analysis easier, allowing you to focus on the interesting
domain problem, not on the uninteresting logistics of data.”

Wickham, H. (2014). Tidy Data. Journal of Statistical
Software, 59(10). https://doi.org/10.18637/jss.v059.i10

4

https://doi.org/10.18637/jss.v059.i10

Definition

“Tidy data sets are all alike but every messy dataset is messy
in its own way”

Tidy data sets provide a standardized way to link

the structure of a data set (its physical layout)

with its semantics (its meaning)

5

A special vocabulary

is used to describe the structure and the semantics of data
sets

We will try to use this terms in the rest of the course when
talking about data

The definitions of the vocabulary will us allow to define tidy
data

6

Data structure

Statistical data sets are:

rectangular tables

that are made up of rows and columns

columns are always labelled

rows are sometimes labelled

Question: Is it enough just to describe structure of data sets?

7

8

Simple transpose of the same data, i.e. rows to columns and
columns to rows, cannot be adequately described using just a
rows and columns terminology

Different layout but both tables are actually representations
of the same data

–> We also need to describe the underlying semantics of the
data

9

Data Semantics

A data set is a collection of values, usually either numbers (if
“quantitative”) or strings (if “qualitative”)

Values are organized in two ways

Every value belongs to a variable

and an observation

10

A variable contains all values that measure the same
underlying attribute (like height or temperature or duration)
across units (like a person or a day or a race)

An observation contains all values measured on the same unit
(like a person or a day or a race) across attributes

11

12

The experimental design (or more general “the way we
retrieved the data”) informs us about the structure of the
observations

For example, we assumed a completely crossed design where
every treatment was to be measured for each person

Here, the design says that each possible value should have
been recorded, which we make explicit by adding a missing
value

Depending on the design, missing values can also be just
dropped

But, the absence of evidence doesn’t mean the evidence of
absence! Only in very special circumstances it could be OK to
replace NA by 0 for example

13

https://www.nature.com/articles/s41586-019-1043-4
14

https://www.nature.com/articles/s41586-019-1043-4

It’s actually hard to define variables and observations
precisely in general

But, usually it’s quite easy to figure out what are variables and
what are observations for a given data set (although there
can be some room for interpretation)

For example, two columns of “height” and “weight” would
easily be called variables

But, what about “height” and “width”?

Those could also values of a “dimension” variable

15

Similarly, columns “home phone” and “office phone” can be
thought of as variables

But for example in the context of fraud detection, we could
think of variable “phone number” and “phone type” instead

This would for example allow to inspect duplicate numbers
more easily, as individuals using the same phone number
would be suspicious

Thinking in this way how to prepare the data in the best way
for the type of problem that you face is one of the most
important skills in data analysis!

16

Some rules of thumb

It is usually easier to describe functional relationships
between variables

For example, “density” as the ratio of “weight” to “volume”

It is usually easier to make comparisons between groups of
observations than by groups of variables

For example average of group a vs average of group b or by
creating multiple subplots of the same variables for different
groups (small multiples)

17

18

What makes data tidy?

19

20

Tidying messy datasets

https://github.com/hadley/tidy-data

21

https://github.com/hadley/tidy-data

Column headers are values not

variable names

22

23

24

25

Multiple variables are stored in

one column

26

27

28

Variables are stored in both rows

and columns

29

30

31

Multiple types in one table

32

33

One type in multiple tables

“It is also common to find data values about a single type of
observational unit spread out over multiple tables or files.

These tables and files are often split up by another variable,
so that each represents a single year, person, or location.”

1. Read the files into a list of tables

2. For each table, add a new column that records the original
file name (because the file name is often the value of an
important variable)

3. Combine all tables into a single table

34

Can be achieved in multiple ways, for example along the lines
of

and in many other ways

library(data.table)

together_dt <- rbindlist(lapply(paste0("filename_",1:10),function(x) fre

import pandas as pd

together_df = pd.concat((pd.read_csv(f) for f in all_files), ignore_inde

35

Tidy visualization tools only need to be input-tidy as their
output is visual

Domain specific languages work particularly well for the
visualization of tidy datasets because they can describe a
visualization as a mapping between variables and aesthetic
properties of the graph (e.g., position, size, shape and color)

This is the idea behind the grammar of graphics (Wilkinson
2005), and the layered grammar of graphics (Wickham 2010),
an extension tailored specifically for R

ggplot2 was also ported to Python with the package
“plotnine”

36

One more command line tool

37

38

https://jqlang.github.io/

39

https://jqlang.github.io/

GitHub has a JSON API, so let’s play with that. This URL gets
us the last 5 commits from the jq repo.

https://jqlang.github.io/jq/tutorial/

40

https://jqlang.github.io/jq/tutorial/

curl -s 'https://api.github.com/repos/jqlang/jq/commits?per_page=5'

[

{

"sha": "8f81668014f4df2654aa9ab674b5498aa9446441",

"node_id": "C_kwDOAE3WVdoAKDhmODE2NjgwMTRmNGRmMjY1NGFhOWFiNjc0YjU

"commit": {

"author": {

"name": "taoky",

"email": "taoky99@outlook.com",

"date": "2023-09-22T00:18:41Z"

},

"committer": {

"name": "GitHub",

"email": "noreply@github.com",

"date": "2023-09-22T00:18:41Z"

},

"message": "Fix the default colors to use 39, the default foreg

"tree": {

41

42

43

GitHub returns nicely formatted JSON. For servers that
don’t, it can be helpful to pipe the response through jq to
pretty-print it. The simplest jq program is the expression “.”,
which takes the input and produces it unchanged as output.

44

curl -s 'https://api.github.com/repos/jqlang/jq/commits?per_page=5' | jq

[

{

"sha": "8f81668014f4df2654aa9ab674b5498aa9446441",

"node_id": "C_kwDOAE3WVdoAKDhmODE2NjgwMTRmNGRmMjY1NGFhOWFiNjc0YjU

"commit": {

"author": {

"name": "taoky",

"email": "taoky99@outlook.com",

"date": "2023-09-22T00:18:41Z"

},

"committer": {

"name": "GitHub",

"email": "noreply@github.com",

"date": "2023-09-22T00:18:41Z"

},

"message": "Fix the default colors to use 39, the default foreg

"tree": {

45

We can use jq to extract just the first commit.

curl -s 'https://api.github.com/repos/jqlang/jq/commits?per_page=5' | jq

{

"sha": "8f81668014f4df2654aa9ab674b5498aa9446441",

"node_id": "C_kwDOAE3WVdoAKDhmODE2NjgwMTRmNGRmMjY1NGFhOWFiNjc0YjU0O

"commit": {

"author": {

"name": "taoky",

"email": "taoky99@outlook.com",

"date": "2023-09-22T00:18:41Z"

},

"committer": {

"name": "GitHub",

"email": "noreply@github.com",

"date": "2023-09-22T00:18:41Z"

},

"message": "Fix the default colors to use 39, the default foregro

"tree": {

"sha": "223b8e8db917ea45390102bfff4c9b34b00e2563",

46

There’s a lot of info we don’t care about there, so we’ll restrict
it down to the most interesting fields.

curl -s 'https://api.github.com/repos/jqlang/jq/commits?per_page=5' | jq

{

"message": "Fix the default colors to use 39, the default foregroun

"name": "GitHub"

}

47

The | operator in jq feeds the output of one filter (.[0] which
gets the first element of the array in the response) into the
input of another ({…} which builds an object out of those
fields). You can access nested attributes, such as
.commit.message.

48

Now let’s get the rest of the commits (not only the first one).

curl -s 'https://api.github.com/repos/jqlang/jq/commits?per_page=5' | jq

{

"message": "Fix the default colors to use 39, the default foregroun

"name": "GitHub"

}

{

"message": "Bump docker/setup-qemu-action from 2 to 3 (#2900)\n\nBu

"name": "GitHub"

}

{

"message": "Bump docker/setup-buildx-action from 2 to 3 (#2901)\n\n

"name": "GitHub"

}

{

"message": "Bump actions/checkout from 1 to 4 (#2902)\n\nBumps [act

"name": "GitHub"

}

{

49

.[] returns each element of the array returned in the
response, one at a time, which are all fed into {message:
.commit.message, name: .commit.committer.name}.

Data in jq is represented as streams of JSON values - every jq
expression runs for each value in its input stream, and can
produce any number of values to its output stream.

50

